TPV Seal Geometry Effects On Compression Set (CSet) and Compression Load Deflection (CLD)

Jere Anderson, Trexel, Inc

Felix Zacarias, Santoprene™ Specialty Products ExxonMobil Chemical

Above-The-Belt 2006 – Novi, MI
Outline

• Background
• Study objectives
• Approach
• Sample production
 – Materials
 – Process
• Results
• Conclusions
Background

• Primary and secondary automotive weatherseals are complex, multifunctional profiles that:
 – Control or affect:
 • Water ingestion
 • Wind noise
 • Door closing effort
 • Aesthetics at vehicle entry
 – Typically consist of:
 • Sponge sealing section
 • Mounting section
 – Dense polymer
 – Metal reinforcement
 • Trim
 – Secondary lip
 – Skin coat
Background

• Performance requirements for weatherseal sponge
 – Surface contact area for sealing
 – Conform to sealing surface imperfections and build tolerances
 – Low compression force
 – Withstand high deformations
 – Provide rapid, elastic deformation recovery
 – Operate over a wide temperature range
 – Maintain properties with cyclical deformations
 – Provide consistent properties over long product life
Meeting weatherseal performance needs requires:

- **Materials**
 - Designed for performance
 - Foamability
 - Surface aspect
 - Low CLD
 - Low CSet
 - Elongation

- **Process**
 - Trexel MuCell™ process
 - Closed cellular structure

- **Part Design**
 - Geometry
 - Dimensions
 - Sponge specific gravity
Background

- EPDM material properties ≠ TPV material properties
 - Current weatherseal designs based on EPDM properties
 - Historical material of choice
 - Seal designer and manufacturer experiences
 - Different design rules anticipated for optimal seal performance with TPV
Objective

• The objective of this investigation was to quantify the effects of varying TPV profile design on key weatherseal performance criteria to define TPV sponge designs for optimal weatherseal performance.
 – Study variables
 • Profile shape
 • Profile wall thickness
 • Sponge density
 – Measured results
 • CSet
 – Short term
 – Long term
 • CLD
Approach

- Produce “D” shaped profiles of equal height varying:
 - Shape
 - Wall thickness 1.5 and 2.0 mm
 - Sponge density 0.55 to 0.65 gm/cc

- Assess performance differences
Sample Preparation

• Process
 – MuCell™ foam extrusion process
 • Physical foaming technology
 • Direct injection of supercritical N₂ or CO₂
 – Equipment
 • Trexel extrusion system 63 mm diameter, 32:1 L/D
 • Throughput 45 kg/hr (100 lb/hr)
Sample Preparation

• Materials
 – Santoprene™ X121-60F150 polymer
 typ. properties
 • Specific gravity 0.97 g/cc
 • Hardness 60 Shore A
 • Ultimate tensile str. 4.5 MPa (650 psi)
 • Elongation @ break 390%
 test method
 TPE-0105/1
 TPE-0104
 TPE-0153
 TPE-0153
 – SCF
 • Type N_2
 • Delivery pressure 172 bar (2,500 psi)
Results

• Samples Produced
 – Actual optical comparator tracings

-2° Profile

22° Profile

57° Profile
Results

Short Term Cset - 22hr @ 70°C
Santoprene™ X121-60F150, Sponge S.g. 0.54 - 0.60 g/cc, Test Method TPE 0016
Results

CLD - 50% and 25% Compression
Santoprene™ X121-60F150, Sponge S.g. 0.54 - 0.60 g/cc, Test Method ASTM D 1667
Results

50% Compression CLD vs. Short Term CSet
Santoprene™ X121-60F150, Sponge S.g. 0.54 - 0.60 g/cc, Test Methods ASTM D 1667 & TPE 0016

Wall Thickness (mm)

CLD (N/100 mm)

CSet (%)

-2° Profile
22° Profile
57° Profile

-2° Profile
22° Profile
57° Profile
Results

Long Term Cset - 1,000 hours @ 70°C
Santoprene™ X121-60F150, Sponge S.g. 0.54 - 0.60 g/cc, Test Method TPE 0016
Results Summary
Santoprene™ X121-60F150 Sponge 0.54 – 0.60 g/cc

- Anticipated CLD and CSet range:

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLD (25% compression)</td>
<td>2.6</td>
<td>10.8</td>
<td>N/100 mm</td>
</tr>
<tr>
<td>CLD (50% compression)</td>
<td>7.0</td>
<td>34.5</td>
<td>N/100 mm</td>
</tr>
<tr>
<td>CSet</td>
<td>32</td>
<td>48</td>
<td>%</td>
</tr>
</tbody>
</table>

Shape and wall thickness changes from 1.4 to 2.2 mm.

- Sponge density changes did not affect CSet or CLD.

- Short term CSet is reduced with:
 - Shape change parallel to load ≈ 5% points at fixed wall thickness.
 - Wall thickness increase ≈ 1.4% points/0.1 mm increase.
 - A total of 16% points with both shape and wall thickness changes.
Results Summary
Santoprene™ X121-60F150 Sponge 0.54 – 0.60 g/cc

• CLD is reduced with:
 – Shape change to more round profiles at fixed wall thickness
 • ≈ 11 to 12 N/100 mm (50% compression)
 • ≈ 1.7 to 3.8 N/100 mm (25% compression)
 – Decreased wall thickness
 • ≈ 2 N/100 mm for a 0.1 mm wall thickness reduction (50% compression)
 • ≈ 1.7 N/100 mm for 0.1 mm wall thickness reduction (25% compression)
Conclusions

• Profile shape has a large effect on TPV sponge CSet and CLD.

• Profile shape for TPV can be optimised for CSet and CLD independently of sponge specific gravity.

• TPV CSet is consistent over time.

• TPV sponge CSet ≤ EPDM sponge CSet after 700 hours (29 days).
THANK YOU FOR YOUR ATTENTION!

The authors would like to thank Curt Waddle from ExxonMobil Chemical for profile testing support.
©2006 Exxon Mobil Corporation. To the extent the user is entitled to disclose and distribute this document, the user may forward, distribute, and/or photocopy this copyrighted document only if unaltered and complete, including all of its headers, footers, disclaimers, and other information. You may not copy this document to a Web site. The information in this document relates only to the named product or materials when not in combination with any other product or materials. We based the information on data believed to be reliable on the date compiled, but we do not represent, warrant, or otherwise guarantee, expressly or impliedly, the merchantability, fitness for a particular purpose, suitability, accuracy, reliability, or completeness of this information or the products, materials, or processes described. The user is solely responsible for all determinations regarding any use of material or product and any process in its territories of interest. We expressly disclaim liability for any loss, damage, or injury directly or indirectly suffered or incurred as a result of or related to anyone using or relying on any of the information in this document. There is no endorsement of any product or process, and we expressly disclaim any contrary implication. The terms, “we”, “our”, "ExxonMobil Chemical", or "ExxonMobil" are used for convenience, and may include any one or more of ExxonMobil Chemical Company, Exxon Mobil Corporation, or any affiliates they directly or indirectly steward. The ExxonMobil Emblem, the “Interlocking X” Device, Santoprene and Vistalon are trademarks of ExxonMobil Corporation.